If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=49576
We move all terms to the left:
x^2-(49576)=0
a = 1; b = 0; c = -49576;
Δ = b2-4ac
Δ = 02-4·1·(-49576)
Δ = 198304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{198304}=\sqrt{16*12394}=\sqrt{16}*\sqrt{12394}=4\sqrt{12394}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{12394}}{2*1}=\frac{0-4\sqrt{12394}}{2} =-\frac{4\sqrt{12394}}{2} =-2\sqrt{12394} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{12394}}{2*1}=\frac{0+4\sqrt{12394}}{2} =\frac{4\sqrt{12394}}{2} =2\sqrt{12394} $
| -7+4(1+5s)=-18 | | -9x+30=2+32 | | -9x+30=2{x-1}+32 | | 787.90(6+7)=56r | | -6=w−10 | | g/3+19=11 | | 11=23-2d | | 6=-20n+14 | | x2=49576 | | 5+(2+x)=13 | | 1=g-8 | | 74-u=161 | | 70-1x=100-2.5x | | 6=20n+14 | | -5x-6=-9x+10 | | z+-10=-8 | | 4x+20=5x+70 | | -3d=7d+25 | | H(x)=0.25x+9.75 | | 5x+2-2x=26 | | 11/4x+51/2=35 | | 80=d+30 | | 8=d+30 | | g/3+11=2 | | 83=52d+31 | | c=45+25 | | 7y=8=3y+44 | | 37x-3=72 | | 7y-4=24+3y | | q/2+9=12 | | (e+5)*3=14 | | m-13=1 |